

Conference: Interdisciplinary Congress of Renewable Energies, Industrial Maintenance, Mechatronics

and Information Technology

BOOKLET

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - E-Revistas - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Modelado y simulación de pruebas de fatiga en álabes de aerogeneradores de baja potencia.

Authors: RUIZ-NUCAMENDI, Nelson Octavio, ROBLES-OCAMPO, José Billerman, SEVILLA-CAMACHO, Perla Yazmin y MORALES-ALIAS, Luis Alberto.

Editorial label ECORFAN: 607-8695 BCIERMMI Control Number: 2019-251 Pages: 17 BCIERMMI Classification (2019): 241019-251 **RNA:** 03-2010-032610115700-14 **ECORFAN-México, S.C. Holdings** 143 – 50 Itzopan Street Mexico Colombia Guatemala La Florida, Ecatepec Municipality Bolivia Mexico State, 55120 Zipcode Cameroon Democratic www.ecorfan.org Phone: +52 | 55 6159 2296 Spain Republic El Salvador Skype: ecorfan-mexico.s.c. Ecuador Taiwan of Congo E-mail: contacto@ecorfan.org Facebook: ECORFAN-México S. C. Peru Paraguay Nicaragua Twitter: @EcorfanC

1. Introducción

- 2. Metodología
- 3. Resultados
- 4. Conclusiones
- 5. Referencias

2. Metodología

• Coeficiente de sustentación

-1.5 α

Figura 3. Curvas del C_L de los perfiles aerodinámicos (X. Tang, X. H. (2015).

Figura 4. Curvas C_L/C_D de los perfiles aerodinámicos (Pavón, G. V. 2019).

Clase II SWT Norma IEC 61400-2						
Descripción	Simbología	Valores	Unidad			
Potencia nominal del	P _{nom}	5000	W			
aerogenerador						
Velocidad medio	V _m	7.5	m/s			
Velocidad de diseño	V _d	10.5	m/s			
Coeficiente de potencia	Ср	0.4	[-]			
Densidad del aire	ρ	1.225	kg/m ³			
Eficiencia del aerogenerador	ηg	0.8	[-]			
Eficiencia de la caja multiplicadora	ηi	0.95	[-]			
Área de barrido	AT	23.200	m²			
Radio total	RT	2.717	m			
No. de elementos del álabe	Ne	10	[-]			
Colocación del 1er perfil	I	0.408	m			
Número de aspas	В	3	[-]			
Viscosidad cinemática	V	1.551E-05	m²/s			
Perfil aerodinámico	al dimensione de del noten (Internetional Floo	tuoto abui col Comigo			

Tabla 1. Variables de entrada para el dimensionado del rotor (International Electrotechnical Comission, 2013).

3. Resultados

Criterios de	Perfil						
evaluación	A18	BW3	NACA4421	NACA4424			
I. Manufactura	2	1	3	4			
I. Coeficiente de sustentación	1	4	3	2			
I. Relación C _L /C _D	4	3	2	1			
I. Ángulos de ataque estables	2	3	4	1			
Promedio	2.25	2.75	3	2			

Tabla 2. Criterios para la selección del perfil aerodinámico (Martínez, J. 2007).

Elemeto	L	D	Cn	Ct	σ	a	a'
1	58.295	0.847	0.882	0.543	0.589	0.311	0.215
2	86.875	1.235	0.949	0.398	0.297	0.306	0.088
3	115.295	1.631	0.979	0.306	0.172	0.302	0.047
4	154.463	1.829	1.028	0.239	0.116	0.343	0.031
5	186.192	2.200	1.036	0.198	0.080	0.343	0.021
6	217.840	2.572	1.041	0.168	0.058	0.343	0.015
7	247.904	2.928	1.045	0.145	0.044	0.343	0.011
8	270.364	3.219	1.048	0.128	0.034	0.343	0.009
9	261.636	3.252	1.056	0.113	0.023	0.344	0.007
10	279.775	3.514	1.060	0.102	0.019	0.345	0.006

Tabla 3. Fuerzas aerodinámicas del álabe.

Caso de carga A - Cargas de fatiga en las aspas y el eje del rotor

Ecuación	Descripción	Valores	Unidad	Simbología
	Cargas en el aspa			
IEC 21	Fuerza centrífuga en la raíz de la pala (eje z)	21421.6626	N	ΔF_{zB}
IEC 22	Momento de flexión de la raíz de edgewise (eje x)	505.9568	Nm	$\Delta M_{\chi B}$
IEC 23	Momento de flexión de la raíz al flapwise (eje y)	698.4127	Nm	ΔM_{yB}
	Cargas en el eje			
IEC 24	Empuje en el eje (eje x)	1142.8571	Nm	$\Delta F_{x-shaft}$
IEC 25	Momento del eje alrededor del eje x	383.8990	Nm	$\Delta M_{x-shaft}$
IEC 26	Momento del eje	876.9695	Nm	ΔM_{shaft}

Tabla 4-a. Casos de carga de acuerdo a la norma IEC61400(International Electrotechnical Comission, 2014).

Caso de carga D-Empuje máximo en el eje

Ecuación	Descripción	Valores	Unidad	Simbología			
IEC 32	Empuje máximo en el eje	4547.4860	N	$F_{x-shaft}$			
Caso de carga E - Rotación máxima del viento							
Ecuación	Descripción	Valores	Unidad	Simbología			
IEC 33	Fuerza centrífuga en la raíz de la pala (eje z)	15423.597 1	N	F _{zB}			
IEC 33'	Momento de flexión en el eje	368.1600	Nm	M _{shaft}			
	Caso de carga F - Corto e	n la conexión	de carga				
Ecuación	Descripción	Valores	Unidad	Simbología			
IEC 34	Momento de flexión en el eje	690.1027	Nm	M _{x-shaft}			
IEC 35	Momento de flexión de la raíz de edgewise (eje x)	425.5041	Nm	M _{xB}			

Tabla 4-b. Casos de carga de acuerdo a la norma IEC61400.

Caso de carga H - Carga extrema del viento

Ecuación	Descripción	Valores	Unidad	Simbología
IEC 38,39	Momento de flexión de la raíz flapwise (eje y)	4846.1754	Nm	M _{yB}
IEC 40, 41	Empuje máximo en el eje	10573.4736	Ν	$F_{x-shaft}$
IEC 43	Fuerza de empuje en el aspa	4699.321594	Ν	<i>F_{Blade}</i>
IEC 43	Fuerza de empuje en la torre	9879.6029	Ν	<i>F_{Nacelle}</i>
IEC 43	Fuerza de empuje en la nacelle	25503.1582	Ν	F _{Tower}
	Caso de carga I - Carga de vie	nto estacionado, má	áxima expo	osición
Ecuación	Descripción	Valores SLM	Unidad	
				Simbología
IEC 44	Cargar del aspa	2397.6131	Ν	<i>F_{Blade}</i>
IEC 44	Cargar nacelle	13011.8154	Ν	F _{Nacelle}
IEC 44	Carga de la torre	5040.6137	N	F _{Tower}

Tabla 4-c. Casos de carga de acuerdo a la norma IEC61400.

4. Conclusiones

- La metodología para la selección de perfiles aerodinámicos a través de los criterios establecidos, es aceptable.
- El dimensionado del álabe con los resultados obtenidos del método BEM, es eficiente.
- Los resultados que se obtienen en Qblade de la simulación aerodinámica garantiza que el modelo es apto para un aerogenerador de 5kW de potencia nominal.
- La aplicación del modelo de carga simplificado (MCS), permite obtener las fuerzas y momentos máximos que actúan en el modelo del álabe.
- La fuerza centrífuga en la raíz del álabe, es el valor máximo de fatiga.
- Con los resultados presentados en el trabajo, se concluye que el modelo de álabe cumple con la eficiencia aerodinámica y con el límite de daño por fatiga, por lo tanto garantiza su buen funcionamiento.

5. Referencias

- Carantoña, O. (2009). Análisis del comportamiento aerodinámico de perfiles empleados en aerogeneradores de baja potencia. Fuentes Alternas de Energía y Generación Distribuida.
- International Electrotechnical Comission. (2013). IEC 61400-2 Wind turbines-Part 2: Small wind turbines. Switzerland.
- International Electrotechnical Comission. (2014). IEC 61400-2 Wind turbines-Part 23: Full-scale structural testing of rotor blades. Switzerland.
- Martínez, J. (2007). Diseño, Manufactura y Caracterización Experimental de Aspas y Controlador de Carga Resistiva para una Turbina de Viento Bergey BWC XLI-Edición única. Tecnológico de Monterrey.
- Pavón, G. V. (2019). Modelación de respuesta aerodinámica para aspas con stall pasivo- Tesis de Maestría. Santo Domingo Tehuantepec, Oaxaca: Universidad del Istmo.
- X. Tang, X. H. (2015). A Direct Approach of Design Optimization for Small Horizontal Axis Wind Turbine Blades. Procedia CIRP, vol. 36, 12-16.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/ booklets)